Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Past events in this series


Thu, 16 Oct 2025

12:00 - 13:00
L3

Think Global, Act Local: A Mathematician's Guide to Inducing Localised Patterns

Dan J. Hill
(University of Oxford)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Dan is a recently appointed Hooke Fellow within OCIAM. His research focus is on pattern formation and the emergence of localised states in PDE models, with an emphasis on using polar coordinate systems to understand nonlinear behaviour in higher spatial dimensions. He received his MMath and PhD from the University of Surrey, with a thesis on the existence of localised spikes on the surface of a ferrofluid, and previously held postdoctoral positions at Saarland University, including an Alexander von Humboldt Postdoctoral Fellowship. www.danjhill.com

Abstract
The existence of localised two-dimensional patterns has been observed and studied in numerous experiments and simulations: ranging from optical solitons, to patches of desert vegetation, to fluid convection. And yet, our mathematical understanding of these emerging structures remains extremely limited beyond one-dimensional examples.
 
In this talk I will discuss how adding a compact region of spatial heterogeneity to a PDE model can not only induce the emergence of fully localised 2D patterns, but also allows us to rigorously prove and characterise their bifurcation. The idea is inspired by experimental and numerical studies of magnetic fluids and tornados, where our compact heterogeneity corresponds to a local spike in the magnetic field and temperature gradient, respectively. In particular, we obtain local bifurcation results for fully localised patterns both with and without radial or dihedral symmetry, and rigorously continue these solutions to large amplitude. Notably, the initial bifurcating solution (which can be stable at bifurcation) varies between a radially-symmetric spot and a 'dipole' solution as the width of the spatial heterogeneity increases. 
 
This work is in collaboration with David J.B. Lloyd and Matthew R. Turner (both University of Surrey).
 
 
Thu, 23 Oct 2025

12:00 - 13:00
L3

Master Stability for Traveling Waves on Networks

Stefan Ruschel
(University of Leeds)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Stefan Ruschel’s research focuses on dynamical systems theory and its applications to nonlinear optics and mathematical biology, among others. He specialises in analytical and numerical methods for delay differential and functional differential equations when the delay is large compared to other time scales of the system. His specific contributions include work on the fixed point spectrum for large delay, as well as the characterisation of slowly oscillating solutions such as travelling pulses and waves.

His future research is dedicated to applying these techniques to delay and lattice dynamical systems arising from coupled excitable and coupled bi-stable systems in laser dynamics and neuroscience, where such solutions play an important role in data transmission and neural signal propagation.

He is currently a research fellow at the University of Leeds (UK), funded by UKRI in recognition of a Horizon Europe MSCA award post-Brexit.

Abstract

 I will present a new framework for determining effectively the spectrum and stability of traveling waves on
networks with symmetries, such as rings and lattices, by computing master stability curves (MSCs). Unlike
traditional methods, MSCs are independent of system size and can be readily used to assess wave
destabilization and multi-stability in small and large networks.

 

 

 

Thu, 30 Oct 2025

12:00 - 13:00
L3

Growth, tissue regeneration and active process

Prof. Martine Ben Amar
(Laboratoire de Physique Statistique, École Normale Supérieure, Paris, France)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Professor Martine Ben Amar is a theoretical physicist whose work explores the physics and mechanics of soft matter, with applications ranging from fundamental instabilities in solids and fluids to biological growth processes. Her research has addressed phenomena such as dendritic growth, Saffman–Taylor instability, elastic singularities, and morphogenesis in vegetal and animal tissues. More recently, she has focused on the interface between physics and biology, modelling the growth of cancerous tumours through reaction–diffusion equations and studying the role of mechanical stresses in tissue development—work that connects directly with medical applications in collaboration with clinicians.

A graduate in atomic physics, she has taught at UPMC since 1993 and was elected a senior member of the Institut Universitaire de France in 2011. She held the McCarthy Chair at MIT in 1999–2000 and has led the federation Dynamics of Complex Systems, uniting over 200 researchers across Paris institutions. Passionate about science, she describes her vocation as “understanding, showing, and predicting the laws of the universe and life.”

Abstract

When a specimen of non-trivial shape undergoes deformation under a dead load or during an active process, finite element simulations are the only technique for evaluating the deformation. Classical books describe complicated techniques for evaluating stresses and strains in semi-infinite, circular or cylindrical objects.  However, the results obtained are limited, and it is well known that elasticity (linear or nonlinear) is strongly intertwined with geometry. For the simplest geometries, it is possible to determine the exact deformation, essentially for low loading values, and prove that there is a threshold above which the specimen loses stability. The next step is to apply perturbation techniques (linear and nonlinear bifurcation theory).
 

In this talk, I will demonstrate how many aspects can be simplified or revealed through the use of complex analysis and conformal mapping techniques for shapes, strains, and active stresses in thin samples. Examples include leaves and embryonic jellyfish.

 

Thu, 06 Nov 2025

12:00 - 13:00
L3

The KdV equation: exponential asymptotics, complex singularities and Painlevé II

Prof. Scott W McCue
(School of Mathematical Sciences Queensland University of Technology Brisbane)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Scott W. McCue is Professor of Applied Mathematics at Queensland University of Technology. His research spans interfacial dynamics, water waves, fluid mechanics, mathematical biology, and moving boundary problems. He is widely recognised for his contributions to modelling complex free-boundary phenomena, including thin-film rupture, Hele–Shaw flows, and biological invasion processes.

Abstract

We apply techniques of exponential asymptotics to the KdV equation to derive the small-time behaviour for dispersive waves that propagate in one direction.  The results demonstrate how the amplitude, wavelength and speed of these waves depend on the strength and location of complex-plane singularities of the initial condition.  Using matched asymptotic expansions, we show how the small-time dynamics of complex singularities of the time-dependent solution are dictated by a Painlevé II problem with decreasing tritronquée solutions.  We relate these dynamics to the solution on the real line.

 

 

Thu, 13 Nov 2025

12:00 - 13:00
L3

 Tsunamis;  and how to protect against them

Prof. Herbert Huppert FRS
(University of Cambridge)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

 

Professor Herbert Eric Huppert FRS
University of Cambridge | University of New South Wales

Herbert Huppert (b. 1943, Sydney) is a British geophysicist renowned for his pioneering work applying fluid mechanics to the Earth sciences, with contributions spanning meteorology, oceanography, and geology. He has been Professor of Theoretical Geophysics and the Founding Director of the Institute of Theoretical Geophysics at the University of Cambridge since 1989, and a Fellow of King’s College, Cambridge, since 1970. He has held a part-time Professorship at the University of New South Wales since 1990.

Elected a Fellow of the Royal Society in 1987, Huppert has served on its Council and chaired influential working groups on bioterrorism and carbon capture and storage. His distinctions include the Arthur L. Day Prize and Lectureship from the US National Academy of Sciences (2005), the Bakerian Lecture (2011), and a Royal Medal (2020). He is also a Fellow of the American Geophysical Union, the American Physical Society, and the Academia Europaea.

Thu, 20 Nov 2025

12:00 - 13:00
L3

Integrating lab experiments into fluid dynamics models

Ashleigh Hutchinson
(University of Leeds)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Ashleigh Hutchinson is an applied mathematician with a strong research focus on fluid mechanics problems rooted in nature and industry. Her work centres on low-Reynolds number flows and non-Newtonian fluids, where she adopts a multidisciplinary approach that combines theoretical models, laboratory experiments, and numerical simulations.

Her other research interests include applying mathematical modelling to solve problems in industries such as finance, sugar, fishing, mining, and energy conservation.

Abstract

In this talk, we will explore three flow configurations that illustrate the behaviour of slow-moving viscous fluids in confined geometries: viscous gravity currents, fracturing of shear-thinning fluids in a Hele-Shaw cell, and rectangular channel flows of non-Newtonian fluids. We will first develop simple mathematical models to describe each setup, and then we will compare the theoretical predictions from these models with laboratory experiments. As is often the case, we will see that even models that are grounded in solid physical principles often fail to accurately predict the real-world flow behaviour. Our aim is to identify the primary physical mechanisms absent from the model using laboratory experiments. We will then refine the mathematical models and see whether better agreement between theory and experiment can be achieved.

 

 

Thu, 04 Dec 2025

12:00 - 13:00
L3

Geometry optimisation of wave energy converters

Emma Edwards
(Department of Engineering Science University of Oxford)

The join button will be published 30 minutes before the seminar starts (login required).

Abstract

Wave energy has the theoretical potential to meet global electricity demand, but it remains less mature and less cost-competitive than wind or solar power. A key barrier is the absence of engineering convergence on an optimal wave energy converter (WEC) design. In this work, I demonstrate how geometry optimisation can deliver step-change improvements in WEC performance. I present methodology and results from optimisations of two types of WECs: an axisymmetric point-absorber WEC and a top-hinged WEC. I show how the two types need different optimisation frameworks due to the differing physics of how they make waves. For axisymmetric WECs, optimisation achieves a 69% reduction in surface area (a cost proxy) while preserving power capture and motion constraints. For top-hinged WECs, optimisation reduces the reaction moment (another cost proxy) by 35% with only a 12% decrease in power. These result show that geometry optimisation can substantially improve performance and reduce costs of WECs.